Download this file

425 lines (346 with data), 7.1 kB

---
title: "my_monocle"
author: "TianyuChen"
date: "2022-10-08"
output: html_document
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```

```{r}
library(monocle3)
library(rhdf5)
```

## we start here
## nature cortex and mouse brain merged data
The data has been prepossessed and only maintain highly variable genes

```{r}
library(anndata)
```

```{r}
f = "monocle_adata_forR_trans_highly.h5ad"
dd <- read_h5ad(f, backed = NULL)
```

```{r}
dd$obs["gene_short_name"] <- dd$obs_names
```

```{r}
cds <- new_cell_data_set(dd$X,
                         cell_metadata = dd$var,
                         gene_metadata = dd$obs)
```

```{r}
rm(dd)
```


```{r}
cds <- preprocess_cds(cds, num_dim = 50,scaling = FALSE,norm_method = "none",method = "PCA",verbose = TRUE)
```

```{r}
cds <- align_cds(cds, alignment_group = "Source")
```


```{r}
cds <- reduce_dimension(cds)
```

```{r}
plot_cells(cds, label_groups_by_cluster=FALSE,  color_cells_by = "Cluster2")
```

```{r}
cds <- cluster_cells(cds)
plot_cells(cds, color_cells_by = "partition")
```

```{r}
cds <- learn_graph(cds)
```

```{r}
p1 <- plot_cells(cds,
           color_cells_by = "Cluster2",
           label_cell_groups=FALSE,
           label_leaves=TRUE,
           label_branch_points=TRUE,
           graph_label_size=1.5)
p1
```

```{r}
png(file="traj_plot1.png",width=1000, height=700)
p1
dev.off()
```

```{r}
p2 <- plot_cells(cds,
           color_cells_by = "Day",
           label_cell_groups=FALSE,
           label_leaves=TRUE,
           label_branch_points=TRUE,
           graph_label_size=1.5)
p2
```

```{r}
png(file="traj_plot2.png",width=1000, height=700)
p2
dev.off()
```

```{r}
cds <- order_cells(cds)
```

```{r}
p3 <- plot_cells(cds,
           color_cells_by = "pseudotime",
           label_cell_groups=FALSE,
           label_leaves=FALSE,
           label_branch_points=FALSE,
           graph_label_size=1.5)
p3
```

```{r}
png(file="traj_plot3.png",width=1000, height=700)
p3
dev.off()
```

```{r}
ciliated_genes <- c(
                    "Hmga2")

p4 <- plot_cells(cds,
           genes=ciliated_genes,
           label_cell_groups=FALSE,
           show_trajectory_graph=FALSE)
```

```{r}
png(file="NEC_marker.png",width=1000, height=700)
p4
dev.off()
```

```{r}
p4
```

```{r}
saveRDS(cds, file = "monocle_traj_batch_corrected.Rds")
```

```{r}
ciliated_genes <- c("Sox2",
                    "Pax6","Hes5","Ube2c","Id4")

p5 <- plot_cells(cds,
           genes=ciliated_genes,
           label_cell_groups=FALSE,
           show_trajectory_graph=FALSE)
p5
```

```{r}
png(file="RGC_marker.png",width=1000, height=700)
p5
dev.off()
```

```{r}
ciliated_genes <- c("Olig1",
                    "Olig2","Pdgfra","Apoe")

p6 <- plot_cells(cds,
           genes=ciliated_genes,
           label_cell_groups=FALSE,
           show_trajectory_graph=FALSE)
p6
```

```{r}
png(file="OPC_marker.png",width=1000, height=700)
p6
dev.off()
```

```{r}
ciliated_genes <- c("Neurog2",
                    "Neurod1")

p7 <- plot_cells(cds,
           genes=ciliated_genes,
           label_cell_groups=FALSE,
           show_trajectory_graph=FALSE)
p7
```

```{r}
png(file="inter_marker.png",width=1000, height=700)
p7
dev.off()
```

```{r}
ciliated_genes <- c("Bcl11b")

p8 <- plot_cells(cds,
           genes=ciliated_genes,
           label_cell_groups=FALSE,
           show_trajectory_graph=FALSE)
p8
```

```{r}
png(file="layer6_marker.png",width=1000, height=700)
p8
dev.off()
```

```{r}
cd <- colData(cds)
```

```{r}
ciliated_genes <- c("Npy","Sst","Nxph1","Htr3a","Prox1","Cxcl14","Meis2","Etv1","Sp8")

p9 <- plot_cells(cds,
           genes=ciliated_genes,
           label_cell_groups=FALSE,
           show_trajectory_graph=FALSE)
```

```{r}
p9
```

```{r}
png(file="interneurons_marker.png",width=1000, height=700)
p9
dev.off()
```



```{r}
ciliated_genes <- c("Htr3a","Prox1","Cxcl14")

plot_cells(cds,
           genes=ciliated_genes,
           label_cell_groups=FALSE,
           show_trajectory_graph=FALSE)
```

```{r}
ciliated_genes <- c("Meis2","Etv1","Sp8")

plot_cells(cds,
           genes=ciliated_genes,
           label_cell_groups=FALSE,
           show_trajectory_graph=FALSE)
```

```{r}
cl <- cd$Clusters
day <- cd$Day
source <- cd$Source
source <- as.character(source)
```

```{r}
cl <- as.character(cl)
cl[source == "2.0"] <- NA
```

```{r}
day <- as.character(day)
day[source == "2.0"] <- NA
```

```{r}
cd$mouse_day <- day
cd$mouse_clusters <- cl
```
```{r}
base_cl <- as.character(cd$Clusters)
base_cl[base_cl == "SCPN1"] <- "SCPN"
cd$base_cl <- base_cl
```

```{r}
colData(cds) <- cd
```

```{r}
p10 <- plot_cells(cds,
           color_cells_by = "mouse_clusters",
           label_cell_groups=FALSE,
           label_leaves=FALSE,
           label_branch_points=FALSE,
           graph_label_size=1.5)
p10
```

```{r}
png(file="mouse_clusters.png",width=1000, height=700)
p10
dev.off()
```




```{r}
p11 <- plot_cells(cds,
           color_cells_by = "mouse_day",
           label_cell_groups=FALSE,
           label_leaves=FALSE,
           label_branch_points=FALSE,
           graph_label_size=1.5)
p11
```

```{r}
png(file="mouse_days.png",width=1000, height=700)
p11
dev.off()
```

```{r}
p12 <- plot_cells(cds,
           color_cells_by = "base_cl",
           label_cell_groups=FALSE,
           label_leaves=FALSE,
           label_branch_points=FALSE,
           graph_label_size=1.5)
p12
```

```{r}
png(file="traj_base_cl.png",width=1000, height=700)
p12
dev.off()
```

# Load model

```{r}
cds <- readRDS("monocle_traj.Rds")
```


```{r}
plot_cells(cds,
           color_cells_by = "Clusters",
           label_cell_groups=FALSE,
           label_leaves=FALSE,
           label_branch_points=FALSE,
           graph_label_size=1.5)
```
```{r}
ciliated_genes <- c("Fezf2")

p9 <- plot_cells(cds,
           genes=ciliated_genes,
           label_cell_groups=FALSE,
           show_trajectory_graph=FALSE)
p9
```

```{r}
merge_18 <- rep(NA,dim(cds)[2])
day <- as.character(colData(cds)$Day)
merge_18[day=="E18"] <- 0
merge_18[day=="E18_S1"] <- 1
merge_18[day=="E18_S3"] <- 2
```

```{r}
colData(cds)$merge_18 <- merge_18
```

```{r}
p11 <- plot_cells(cds,
           color_cells_by = "merge_18",
           label_cell_groups=FALSE,
           label_leaves=FALSE,
           label_branch_points=FALSE,
           graph_label_size=1.5)
p11
```
```{r}
png(file="merge_18.png",width=1000, height=700)
p11
dev.off()
```
```{r}
merge_P1 <- rep(NA,dim(cds)[2])
day <- as.character(colData(cds)$Day)
merge_P1[day=="P1"] <- 0
merge_P1[day=="P1_S1"] <- 1
colData(cds)$merge_P1 <- merge_P1
```

```{r}
p13 <- plot_cells(cds,
           color_cells_by = "merge_P1",
           label_cell_groups=FALSE,
           label_leaves=FALSE,
           label_branch_points=FALSE,
           graph_label_size=1.5)
p13
```

 

```{r}
p14 <- plot_cells(cds,
           color_cells_by = "Source",
           label_cell_groups=FALSE,
           label_leaves=FALSE,
           label_branch_points=FALSE,
           graph_label_size=1.5)
p14
```
```{r}
png(file="Source.png",width=1000, height=700)
p14
dev.off()
```